FACULTY OF ENGINEERING

Department of Industrial Engineering

IE 374 | Course Introduction and Application Information

Course Name
Applied Production Systems
Code
Semester
Theory
(hour/week)
Application/Lab
(hour/week)
Local Credits
ECTS
IE 374
Fall/Spring
2
2
3
5

Prerequisites
None
Course Language
English
Course Type
Service Course
Course Level
First Cycle
Mode of Delivery -
Teaching Methods and Techniques of the Course -
Course Coordinator -
Course Lecturer(s) -
Assistant(s) -
Course Objectives In this course, the specific part of Software Applications in Industry namely PRODUCTION will be covered. Subjects such as Introduction to Production Systems, Production planning and management, Inventory management, Product design, Bill of Materials, routes will be the topics of the course. Project Groups will be working on a live example from the industry and they can regenerate the whole process from purchasing until shipping. The groups will be using the ERP software located in our laboratories; they are going to input the data and obtain the results for further analysis.
Learning Outcomes The students who succeeded in this course;
  • Will be able to explain the main features of Production Planning Systems
  • Will be able to define all stages of a manufacturing system from purchasing to shipping with real-life examples
  • Will be able to analyze the manufacturing system operations and corresponding computer application components by observations at on-site factory visits
  • Will be able to comprehend the related modules of ERP systems used in Computer Integrated Manufacturing
  • Will be able to categorize the production systems and create a product tree
Course Description ERP Lab applications, production modules will be covered. During the semester the groups will prepare 2 presentations and 2 progress reports. These reports will explain in detail about the software applications in Industry.

 



Course Category

Core Courses
Major Area Courses
X
Supportive Courses
Media and Management Skills Courses
Transferable Skill Courses

 

WEEKLY SUBJECTS AND RELATED PREPARATION STUDIES

Week Subjects Related Preparation
1 Production Systems and Production Management
2 (Production Systems Classifications, Contemporary application samples Formation of project groups, at most 5 students per group
3 Just in Time manufacturing (JIT), made to order manufacturing
4 Production Planning and Control Selecting and assigning Production Case studies to the groups
5 Order management, Purchasing Management, Quality control in receiving goods Proposal submissions
6 Product Trees and recipes, Route Management, Entering data like Suppliers, products, raw materials, recipes to the Production system
7 Production Capacity problems, machine layout planning 1. Progress Report submission,
8 Defining Job and Cost centers,
9 Running an instance of Material Requirements Planning (MRP) Project Presentation of the groups
10 Reading and analyzing the outcomes of MRP, producing work orders
11 Purchasing, inventory and shipment management; Quality control at shipping,
12 Field visits 2. Progress Report submission
13 Field visits
14 Field visits
15 The Final Presentation of the Project Groups
16 Review of the Semester  

 

Course Notes/Textbooks Groover, Mikell P. (2007). Automation, Production Systems, and C.I.M. PrenticeHall: Englewood Cliffs, N.J.
Suggested Readings/Materials

 

EVALUATION SYSTEM

Semester Activities Number Weigthing
Participation
1
10
Laboratory / Application
Field Work
Quizzes / Studio Critiques
Portfolio
Homework / Assignments
2
20
Presentation / Jury
2
30
Project
Seminar / Workshop
Oral Exams
Midterm
Final Exam
1
40
Total

Weighting of Semester Activities on the Final Grade
60
Weighting of End-of-Semester Activities on the Final Grade
40
Total

ECTS / WORKLOAD TABLE

Semester Activities Number Duration (Hours) Workload
Theoretical Course Hours
(Including exam week: 16 x total hours)
16
2
32
Laboratory / Application Hours
(Including exam week: '.16.' x total hours)
16
0
Study Hours Out of Class
15
3
45
Field Work
0
Quizzes / Studio Critiques
0
Portfolio
0
Homework / Assignments
2
5
10
Presentation / Jury
2
9
18
Project
0
Seminar / Workshop
0
Oral Exam
0
Midterms
0
Final Exam
1
15
15
    Total
120

 

COURSE LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS RELATIONSHIP

#
Program Competencies/Outcomes
* Contribution Level
1
2
3
4
5
1

To have adequate knowledge in Mathematics, Science and Industrial Engineering; to be able to use theoretical and applied information in these areas to model and solve Industrial Engineering problems.

X
2

To be able to identify, formulate and solve complex Industrial Engineering problems by using state-of-the-art methods, techniques and equipment; to be able to select and apply proper analysis and modeling methods for this purpose.

X
3

To be able to analyze a complex system, process, device or product, and to design with realistic limitations to meet the requirements using modern design techniques.

X
4

To be able to choose and use the required modern techniques and tools for Industrial Engineering applications; to be able to use information technologies efficiently.

X
5

To be able to design and do simulation and/or experiment, collect and analyze data and interpret the results for investigating Industrial Engineering problems and Industrial Engineering related research areas.

X
6

To be able to work efficiently in Industrial Engineering disciplinary and multidisciplinary teams; to be able to work individually.

X
7

To be able to communicate effectively in Turkish, both orally and in writing; to be able to author and comprehend written reports, to be able to prepare design and implementation reports, to present effectively; to be able to give and receive clear and comprehensible instructions

8

To have knowledge about contemporary issues and the global and societal effects of Industrial Engineering practices on health, environment, and safety; to be aware of the legal consequences of Industrial Engineering solutions.

9

To be aware of professional and ethical responsibility; to have knowledge of the standards used in Industrial Engineering practice.

10

To have knowledge about business life practices such as project management, risk management, and change management; to be aware of entrepreneurship and innovation; to have knowledge about sustainable development.

X
11

To be able to collect data in the area of Industrial Engineering; to be able to communicate with colleagues in a foreign language.

12

To be able to speak a second foreign at a medium level of fluency efficiently.

13

To recognize the need for lifelong learning; to be able to access information, to be able to stay current with developments in science and technology; to be able to relate the knowledge accumulated throughout the human history to Industrial Engineering.

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest

 


SOCIAL MEDIA

NEWS |ALL NEWS

Izmir University of Economics
is an establishment of
izto logo
Izmir Chamber of Commerce Health and Education Foundation.
ieu logo

Sakarya Street No:156
35330 Balçova - İzmir / Turkey

kampus izmir

Follow Us

İEU © All rights reserved.