FACULTY OF ENGINEERING

Department of Industrial Engineering

MATH 240 | Course Introduction and Application Information

Course Name
Probability for Engineers
Code
Semester
Theory
(hour/week)
Application/Lab
(hour/week)
Local Credits
ECTS
MATH 240
Fall
3
0
3
6

Prerequisites
  MATH 154 To get a grade of at least FD
Course Language
English
Course Type
Required
Course Level
First Cycle
Mode of Delivery -
Teaching Methods and Techniques of the Course Lecture / Presentation
Course Coordinator
Course Lecturer(s)
Assistant(s)
Course Objectives This course aims to introduce students the theory of probability and its applications to engineering problems.
Learning Outcomes The students who succeeded in this course;
  • use fundamental concepts such as sample space, events and counting techniques.
  • explain concepts of probability.
  • use conditional probability, the total probability rule and Bayes' theorem.
  • compute discrete and continuous random variables.
  • investigate the advantages of joint probability distributions.
  • find mean and variance of random variables.
  • apply discrete and continuous distributions.
Course Description In this course some important theorems about probability are investigated. In addition, applications of random variables and their probability distributions are discussed.

 



Course Category

Core Courses
Major Area Courses
Supportive Courses
Media and Management Skills Courses
Transferable Skill Courses

 

WEEKLY SUBJECTS AND RELATED PREPARATION STUDIES

Week Subjects Related Preparation
1 Sample space and events Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, “Probability”, Chap. 2 Probability & Statistics for Engineers and Scientists, 9th Edition (Pearson, 2017), 55-63.
2 Events and counting sample points Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, “Probability”, Chap. 2 Probability & Statistics for Engineers and Scientists, 9th Edition (Pearson, 2017), 58-71.
3 Counting sample points, probability of an event and additive rules Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, “Probability”, Chap. 2 Probability & Statistics for Engineers and Scientists, 9th Edition (Pearson, 2017), 64-79.
4 Additive rules, conditional probability of an event Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, “Probability”, Chap. 2 Probability & Statistics for Engineers and Scientists, 9th Edition (Pearson, 2017), 76-89.
5 Bayes’ rule, Concept of random variable and discrete probability distributions Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, “Probability”, Chap. 2 Probability & Statistics for Engineers and Scientists, 9th Edition (Pearson, 2017), 92-97, 101-106.
6 Ara Sınav I
7 Discrete probability distributions and continuous probability distributions Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, “Random Variables and Probability Distributions”, Chap. 3 Probability & Statistics for Engineers and Scientists, 9th Edition (Pearson, 2017), 104-111.
8 Joint probability distributions Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, “Random Variables and Probability Distributions”, Chap. 3 Probability & Statistics for Engineers and Scientists, 9th Edition (Pearson, 2017), 114-124.
9 Mean and variance of a random variable Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, “Mathematical Expectation”, Chap. 4 Probability & Statistics for Engineers and Scientists, 9th Edition (Pearson, 2017), 131-147.
10 Binomial and multinomial distributions Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, “Some Discrete Probability Distributions”, Chap. 5 Probability & Statistics for Engineers and Scientists, 9th Edition (Pearson, 2017), 163-170.
11 Ara Sınav II
12 Binomial and multinomial distributions Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, “Some Discrete Probability Distributions”, Chap. 5 Probability & Statistics for Engineers and Scientists, 9th Edition (Pearson, 2017), 172-184.
13 Uniform, Normal, areas under the normal curve, applications of the normal dist. and exponential distribution Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, “Some Continuous Probability Distributions”, Chap. 6 Probability & Statistics for Engineers and Scientists, 9th Edition (Pearson, 2017), 191-205.
14 Uniform, normal, areas under the normal curve, applications of the normal dist. and exponential distribution Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, “Some Continuous Probability Distributions”, Chap. 6 Probability & Statistics for Engineers and Scientists, 9th Edition (Pearson, 2017), 191-205.
15 Semester review
16 Final Exam

 

Course Notes/Textbooks

Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, Probability and Statistics for Engineers and Scientists, 9th Edition (United States of America: Pearson, 2017).

ISBN-13: 978-0134115856

Suggested Readings/Materials

William Navidi, Statistics for Engineers and Scientists, 5th Ed. (Mc-Graw Hill, 2019)  ISBN-13: 978-1260547887

 

EVALUATION SYSTEM

Semester Activities Number Weigthing
Participation
Laboratory / Application
Field Work
Quizzes / Studio Critiques
Portfolio
Homework / Assignments
Presentation / Jury
Project
Seminar / Workshop
Oral Exams
Midterm
2
60
Final Exam
1
40
Total

Weighting of Semester Activities on the Final Grade
2
60
Weighting of End-of-Semester Activities on the Final Grade
1
40
Total

ECTS / WORKLOAD TABLE

Semester Activities Number Duration (Hours) Workload
Theoretical Course Hours
(Including exam week: 16 x total hours)
16
3
48
Laboratory / Application Hours
(Including exam week: '.16.' x total hours)
16
0
Study Hours Out of Class
14
3
42
Field Work
0
Quizzes / Studio Critiques
0
Portfolio
0
Homework / Assignments
0
Presentation / Jury
0
Project
0
Seminar / Workshop
0
Oral Exam
0
Midterms
2
25
50
Final Exam
1
40
40
    Total
180

 

COURSE LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS RELATIONSHIP

#
Program Competencies/Outcomes
* Contribution Level
1
2
3
4
5
1

To have adequate knowledge in Mathematics, Science and Industrial Engineering; to be able to use theoretical and applied information in these areas to model and solve Industrial Engineering problems.

X
2

To be able to identify, formulate and solve complex Industrial Engineering problems by using state-of-the-art methods, techniques and equipment; to be able to select and apply proper analysis and modeling methods for this purpose.

3

To be able to analyze a complex system, process, device or product, and to design with realistic limitations to meet the requirements using modern design techniques.

4

To be able to choose and use the required modern techniques and tools for Industrial Engineering applications; to be able to use information technologies efficiently.

X
5

To be able to design and do simulation and/or experiment, collect and analyze data and interpret the results for investigating Industrial Engineering problems and Industrial Engineering related research areas.

6

To be able to work efficiently in Industrial Engineering disciplinary and multidisciplinary teams; to be able to work individually.

7

To be able to communicate effectively in Turkish, both orally and in writing; to be able to author and comprehend written reports, to be able to prepare design and implementation reports, to present effectively; to be able to give and receive clear and comprehensible instructions

8

To have knowledge about contemporary issues and the global and societal effects of Industrial Engineering practices on health, environment, and safety; to be aware of the legal consequences of Industrial Engineering solutions.

9

To be aware of professional and ethical responsibility; to have knowledge of the standards used in Industrial Engineering practice.

10

To have knowledge about business life practices such as project management, risk management, and change management; to be aware of entrepreneurship and innovation; to have knowledge about sustainable development.

11

To be able to collect data in the area of Industrial Engineering; to be able to communicate with colleagues in a foreign language.

12

To be able to speak a second foreign at a medium level of fluency efficiently.

13

To recognize the need for lifelong learning; to be able to access information, to be able to stay current with developments in science and technology; to be able to relate the knowledge accumulated throughout the human history to Industrial Engineering.

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest

 


SOCIAL MEDIA

NEWS |ALL NEWS

Izmir University of Economics
is an establishment of
izto logo
Izmir Chamber of Commerce Health and Education Foundation.
ieu logo

Sakarya Street No:156
35330 Balçova - İzmir / Turkey

kampus izmir

Follow Us

İEU © All rights reserved.